UNIQUENESS OF HYPERFINITE TYPE II; FACTOR

ABSTRACT. These notes are devoted to the exposition of Murray & von Neumann’s proof of the
theorem that any two hyperfinite II; factors are isomorphic.

1. VON NEUMANN ALGEBRAS, FACTORS

Let 27 be a Hilbert space. Throughout these notes we assume that J# is separable. A von
Neumann algebra is a self-adjoint unital x-subalgebra M of B(4#) closed in the w-topology.®
Equivalently M = M", where for any S C B(5) we define its commutant by

S ={z eB(H)|xs=szforalls €S}

and double commutant S" = (S')’.
For a convex set, being closed in the w-topology is equivalent to being closed in a number of
other topologies like

e the so-topology defined by family of seminorms
B(Z)>a— |agl, et
e the wo-topology defined by family of seminorms
B(A#) > ar— |(n]ag)],  &ne .

A von Neumann algebra M is a factor if the center Z°(M) = M N M’ of M is equal to C1.
We denote the set of projections in M by

P (M) = {pe M|p"p =p}
and unitary elements by
U(M)={ueMuu=uu =1}
By a subalgebra of a von Neumann algebra N we shall almost always® mean a unital w-closed
x-subalgebra N C M. A subfactor is a subalgebra which is a factor.

1.1. Comparison theory, comparability.

Definition 1.1. Let p,q € Z(M). We say that

(1) p<qifpg=np,
(2) p ~ q if there is u € M such that u*u = p and uu* = ¢,
(3) p < q if there is r € #(M) such that p ~r < g.

Both “<” is a partial order on &(M) and “<” is a partial order on &(M)/ ~. The antisym-
metry of “x” is expressed by the so called Schroder-Bernstein theorem.

Theorem 1.2. For p,q € P(M) there exists z € P (2 (M)) such that
pz< gz, p(l—2z)=q(l—2).
It follows that if M is a factor then “<” defines a total order on &(M).

2The w-topology is the weak* topology coming from the duality B(J¢) = 7 (5)*.
b] e. unless explicitly sated otherwise.
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1.2. Type II; factors.

Definition 1.3. A factor M is of type II; if M is infinite-dimensional and M possesses a faithful
tracial normal state.

The true definition of a type II; factor is that M is such if M is a factor without minimal
projections and whose unit 1 is a finite projection, i.e. that 1 is not equivalent to a projection
p S 1. It is a theorem that M is a II; factor if and only if it satisfies the conditions of Definition
1.3. It is also known that any trace on a factor is automatically faithful and normal (so these
conditions are not necessary in Definition 1.3). One can also prove that a trace on a factor is
unique (if it exists).

Theorem 1.4. Let M be a 11y factor and let T be its trace. Then for any r € [0,1] there exists
p € P(M) such that T(p) =r.

2. PRELIMINARY RESULTS

Let M be a von Neumann algebra with a faithful state 7. Then we can define a positive definite
scalar product on M by
(a]b) = T(a™b).
The associated norm a — +/(a|a) will be denoted by || - ||2 (the state 7 will be fixed). We have
that for any a,b € M the following estimate holds:

labll2 < llal[[o]]2-
Indeed,
llabl[3 = (ablab) = 7((ab)*ab) = 7(b*a*ab) < [|a]|*7(b*b) = [|a[?||b]|3
because a*a < ||al|?1 and 7 is positive.
It 7 is a trace then we have also
[[bellz < [[b]|2|cl]
so that
[labell2 < [lall|[b]|2]|]]

for all a,b,c € M.
From now on we assume that M is a von Neumann algebra with a faithful tracial state. The
symbol || - |2 will denote the associated norm.

Lemma 2.1. For any selfadjoint a,b € M we have
Ha+i]l b+il < 2||a—b||2.

a—il b—i1 H2

Proof. We have
atil _ 0L — (g —i1) " ((a +i1)(b—il) — (e —i1)(b+i1)) (b —i1) "
—2i(a —i1) ! (a — b)(b —i1) .
Therefore, since |(a —il) 71|, ||(b —i1)7!|| < 1 (as a = a* and b = b*) we obtain
et = 252 ]l, < 2l(a —i2) 7 llla = bll2[|(0 — i1) ]| < 2fla — bl

a—il b—il

Lemma 2.2. Let f € C(T). For any e > 0 there exists wi(e) > 0 such that

( u,ve%(M)a) > N (Hf(U)—f(v)H2 <o).

[u—vll2 <wi(e
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Proof. If f1, fo € C(T) then®
| f2(u) = f2(0) ||, < || f1(w) = fa(u)||, + || f2(w) = f2(v)||, + || fr(v) = f2(0) |,
< | fo = foll o + [[fo(w) = fo)|l, + I f2 = Fol

Therefore, if for any € a constant @, (&) satisfying

< e e XD, ) — (IFw) - Fw)l, <e).

can be found for f a trigonometric polynomial, then an analogous constant can be given for
any f € C(T) (indeed, take a trigonometric polynomial f such that ||f — f|lcc < § and define
wi(e) = w1(5))-

Therefore let us assume that f is a trigonometric polynomial

M
= Z an/”'n7 ne T.
n=—N

Then

M
[f(w) = @), < > lanllu™ = o2
n=—N
N M
:Z|Oz—n|||u*n—v*n||2+z|ozn|||u"—v"||2
oz_nlllu —Un||2+2|an|||u — "5
Zuk_l(v—v yokt +Z|a"|
k=1 n=0
a_n|<2 = s — vy 1||2>
+Zan|(z o= = 00
N
< Zla_n|<z [(u—v ||2> Zan|(z [(u—v ||2>
n=1
= [[(u —v)]2 Z n||ov|
n=—N

Therefore for such f we can take

n n

Z uF (v — v)ok !

k=1

o]
2

an M= uMz

9= 5 |n|an|) .

n=—N

(]
Lemma 2.3. Let g € Co(R)™ for which , liI_El g(t) = , lim ¢(t). Then for any e > 0 there exists
——+00 ——00
wa(g) > 0 such that

( S ) = e =g, <),

“Note that ||a||2 = (a*a) < +/|la*al| = ||a|| for any a € M.
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Proof. A function g with the properties as in the statement of the lemma corresponds to a unique
continuous function f on T via

C[9(EE)  n#L
Fw) { lim g(t) p=1.

t—*doo

In other words

Let

Then
g(a) = f(u) and g(b) = f(v).

As f € C(T), Lemma 2.2 gives us a function & — wy(g). Put wa(e) = fwi (). Then since
lu—vll2 < 2[ja — b2
(by Lemma 2.1), we have that |ja — b||2 < wa(e) guarantees that
lg(@) —g®)l, = [ £() = F@)], <.
O

Proposition 2.4. For any ¢ > 0 there exists w3(e) > 0 such that if N is a subalgebra of M,
e € PM) and a € N is such that ||a — e|l2 < ws(e) then there exists f € P(N) such that
[f —ell2 <e.

Proof. We have
I3 +a7) = ell, = [3a-+e) — 3a" =), < 3(la—ello + a” —el) = la el

In other words we may (by replacing a by %(a + a*) if necessary) that a = a* and any estimate
on |la — e||2 will still hold.
Define g1, g2 € Co(R)™ by

1 It| > 1,
gt)=32/t|-1 L<t/<1,
0 ] < 3,
1 |t >3
t) = -y
g2(1) {2|t| it < L.

Then Lemma 2.3 applies to both g1 and ga. Let w)(e) be the smaller of the values wa(e) which
Lemma 2.3 gives for g; and go and let

ws(e) = wh(5).
Now let h(t) = x(|t| > 3) and
f="h(a) e Z(M).

Since ¢1(t) = g2(t) = h(t) =t for any ¢ in the spectrum of f

91(f) = g2(f) = h(t) = f.
Moreover, since

(1 —h(t)gi(t) + h(t)ga(t) = h(t)

we have

(I = flgi(a) + fg2(a) = f.

If |la — e|l2 < w3(e) then
lor(@) = g1(e)]l, < 5 and lgz(a) = ga(e)]], < 5-

dIn fact (1 — h(t))g1(t) = 0 and h(t)g2(t) = h(2).
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But ¢1(e) = g2(e) = e (both functions coincide with identity on spectrum of e) so that
fost@) —ell, <5 and loata) —ell, < .
It follows that
1@ = £)(g1(@) =€) + flg2(a) =€), < [[@ = N)g1(a) = ) [, + [|F (92(a) = )
=1 = flllgr(a) = ell, + 1 fllllg2(a) = ],
< llgr(@) —efl, + llg2(a) =, <=
Now we note that
(L —f)(91(a) —e) + f(g2(a) —€) = (T = fgr(a) + fga(a)) —e=f —e
so that || f —el[2 <e. O

The next proposition can be proved using Lemma 2.4

Proposition 2.5. Let S C M be an algebra. Then the following conditions are equivalent:

(1) S is strongly closed,
(2) S is closed in the metric defined by || - ||2-

Lemma 2.6. For any ¢ > 0 there exists wa(e) > 0 such that for any e, f € (M) such that
lle = fll2 < wale)
there exists a partial isometry w € M with w*w < e and ww* < f and such that
lle — w2 < e.

Proof. Let a = fe has polar decomposition a = w|a| with |a|,w € M. The partial isometry w
satisfies
wiw < e

because

Ranw*w = (kera)® = Rana* = Ranef C Rane.
In particular we = ww*we = w(w*we) = w(w*w) = ww*w = w. Similarly
ww* < f
because -
Ran ww* = Rana = Ran fe C Ran f.
Let g € Co(R)* be the function
g(t) = {1 o=,

[t| > 1.

Then g(|al?) = |a| or, in other words,
glefe) = lal.
Lemma 2.3 provides for € > 0 the number wy(e) related to the function g. Let
wyle) = min{wg(%), %}
This choice guarantees that
le —efellz = [le(e = flell, < lle = fll2 < wale) < wa(5),
so that
le = lalll, = [le = g(efe)ll, = llg(e) = g(efe)ll, < §
and
lw = all, = [lw = wlall|, = [w(e = lal)]l, < 5.

This means that [|w — fell2 < 5.

On the other hand

Ife el = [|(f = e)ell, < If —ell2 < 5.
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It follows that
[w—ell2 < [lw— fell2+ [|fe —ell2 <e.
O

Lemma 2.7. Let u € % (M) and w € M is a partial isometry such that ux = wx for all

x € Ranw*w, then
lu —wll2 < v/2[lw — 1|

Proof. Since u and w agree on the orthogonal complement of ker w which is the range of w* we
have

ww* = ww*
and so
wu® = (ww*)" = ww*.
Therefore
(u—w)(u—w)" =uwu* —wu" —uw* +ww" =1—ww*
and
= wllz = £/ ((u — w)(u —w)) = /7L —wer).
Finally
(1 —ww*) =7(—(w — 1)1* — w(w — 1)*)
= T(—(’LU — ]l)]l*) — T(w(w — ]l)*)
< Jr((w=D)17)| + [ (wlw - 1)7)
< |r(@(w — 1)) | + |7 ((w — 1)*w)|
|]l\w 1) ‘—|—| w— ]l\w)|
< [[2fl2flw = L2 + [Jw = Lf2[Jw][2 < 2|1 — w]]2
because |wl|3 = 7(w*w) < 7(1) = 1. 0

Proposition 2.8. Let M be a Iy factor. For any e > 0 there exists ws(e) > 0 such that for any
e, f e P(M) with T(e) = 7(f) and such that

le = FIl <ws(e)
there exists U € % (M) such that
e=UfU"
and
U —1|2 <e.

Proof. We choose ¢’ > 0 such that

2(Ve +¢') <e
and we put

UJ5(6) = w4(£’).
By Lemma 2.6 there is a partial isometry wq such that

wywo < e, wowy < f

and

lwo —e|l2 < €.
Now we note that

T(e — wiwg) = 7(f — wowy).
Since M is a II; factor, there is a partial isometry vy such that
VoV = € — Wy, vovy = f — wowyg.

Put

Ug = Wy + Vg.
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Then wug is a partial isometry and
usuo = e, uoug = f.
We can repeat the above construction with 1 — e and 1 — f in place of e and f because
@ —e) = @= 1), =lle = fll2 < wale).
This gives us a partial isometry w; € M such that
wiw; <1 —e, wiwy <1 -—f

and
|wr — (1 —e€)]|, <&

Also we get v; as above and a partial isometry u; = wi + v; with

ujuy =1 — e, wjuy =1 — f.
Define now
W = wy + wy, U =up+ uz.
It is simple to see that U is unitary and W is a partial isometry. Moreover
f=UeU"

(UeU™ = (uo + ur)e(us + ui) = (uo + ur)uguo(us + ui) = (uo + ur)ug = uous = f).
Moreover U and W agree on (ker W)+. Therefore, by Lemma 2.7,

I = Wllz < V2IW = 1].
Recall that
W —1|2 = [Jwo + w1 — 1|2 = Hwo —e+w — (1 - e)||2 < Jlwo — ella+||wr — (1 — e)H2 < 2¢.
Thus
U =1l < U =W+ [W =12 < V2[W =1l + [|W - 1} < Vie' +2¢' <.

3. APPROXIMATE FINITE-DIMENSIONALITY
Definition 3.1. Let (pi1,pe,ps,...) be a sequence of natural numbers. We say that M is
AFD(p1, p2, ps, - - . ) if there exists a sequence (IV;);en of subalgebras of M such that

(1) N; is a factor of type I,
(2) Ny CNyCN3C---,

(3) M = <i[°_jl Ni>”.

Remark 3.2. Two II; factors which are AFD(py, pa, ... ) for some sequence (p;);en are isomorphic.
Indeed, first we produce an isomorphism on dense subalgebras, both isomorphic to

) .
i=1

To extend this isomorphism to completions we note that this isomorphism must preserve the trace
which makes it isometric in || - ||2. Hence the extension is so-continuous on bounded sets and thus
normal.

Definition 3.3. We say that M is AFD(A) if
(1) for any aq,...,am € M,
(2) for any € >0
there exists n € N such that for any ¢ > n there exists a subfactor N C M such that
(1) N is a factor of type I,
(2) there are by,...,by, € N such that

||bi—ai||2<€, 1=1,...m.
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Definition 3.4. We say that M is AFD(B) if

(1) for any aq,...,am € M,

(2) for any € >0
there exists a subalgebra N C M such that

(1) dim N < oo,

(2) there are by, ...,b, € N such that

||bi—ai||2<€, 1=1,...m.

Definition 3.5. We say that M is AFD(C) if there exists a sequence (NV;);cn of subalgebras of
M such that

(1) dim N; < oo for all 4,

(2) Ny C N2 CN3C---,

(&M—ngy.

Remark 3.6. The last definition is applicable to any von Neumann algebra M (not necessarily a
II; factor). An algebra which is generated by an increasing sum of finite-dimensional subalgebras
is called hyperfinite or injective.®

Theorem 3.7 (Murray & von Neumann 1943). Let M be a II; factor on a separable Hilbert space
and let (p1,p2,Dp3,...) be a sequence of natural numbers such that
® D; |pi+1 f07" all i,

® D1 — OQ.
11— 00

Then the following conditions are equivalent:
(1) M is AFD(p1,p2,ps,--.),
(2) M is AFD(A),
(3) M is AFD(B),
(4) M is AFD(C).
The obvious implications are:
AFD(p17p27p37"') = AFD(C)
and
AFD(A) = AFD(B).
Also the implication
AFD(C) = AFD(B).
is not difficult due to Proposition 2.5.

4. IMPLICATION “AFD(A) = AFD(py,p2,p3,...)"
In this section we assume that M is a IT; factor which is AFD(A).

Lemma 4.1. For any
e peN,
at,...,am € M,
e € P (M) such that T(e) = %,
e>0
there exists n € N such that for any g > n with p | q there exists N C M such that
(1) N is a subfactor of type 1,
(2) there exist by, ..., by € N such that ||b; — a;||2 < e,

(3) there exists f € P(N) such that T(f) = % and ||f —ell2 <e.

€Such algebras happen to be precisely the injective objects of the category of von Neumann algebras with
separable preduals and normal completely positive unital maps as morphisms.
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Proof. Choose £” such that v’ + &” < ¢ and let ¢ = min{e,w3(e”)}, where ws is taken from
Proposition 2.4. Then let us use the property AFD(A) for the data ay,...,am,am+1 =€ and €’

This produces a natural n and for any ¢ > n a subfactor N C M of typel; and b1, ..., by, by €
N with ||by — a;]je <&’ fori=1,...,m+ 1.

By Proposition 2.4 there exists fi € Z(N) with || f1 — e|l2 < &”. We have

[7(f1) =7(e)| = [r(fi =) < I fi —el2 <" (1)
(here we use the Schwartz inequality
|7(a*b)| < llal2][b]l2

fora=1and b= f; —e).

Now N is of type I, and we only take ¢ such that p | g. Therefore we have f € Z(N) such that
7(f) = zl) and f < f1. Now since fi — f is a projection, we have

1= =7((fr = 0= ) =70 = ) =7(f1) = 7(f).
Ifr = fllz = V7(f1) = 7(f) = \/|7(fr) = 7(e)]| < VE"

Thus

by (1).
It follows that
If—ellz <|If = fill+ 1f1 —ella < Ve’ + " <.

Lemma 4.2. For any
e peEN,
® ay,...,am €M,
e e € P(M) such that T(e) = %,
e >0
there exists n € N such that for any g > n with p | q there exists N C M such that

(1) N is a subfactor of type 1,
(2) there exist by,...,bym € N such that ||b; — a;|2 < €,
(3) e€ N.

Proof. The elements a1, ...,a, and € > 0 are given, so let

"

=
2 max{fla;[[}+1

Then let &/ = min{ws(e”),e"”}, where w5 comes from Proposition 2.8. Then let us apply Lemma
4.1 with p, a1, ..., am, e, &’. This gives us n € N and for any ¢ > n with p | ¢ we obtain a subfactor
Ny C M of type I, with elements b1, ...,b. € N; and a projection f € Ny such that

16} — agll2 < €, i=1,...,m

and [|f —ell2 < €.
From Proposition 2.8 we know that there exists u € % (M) such that

e=ufu* and |lu—1]2 <"

Define N = uNju*. Then N is a subfactor of M of type I,. Let b; = ubju* (i = 1,...,m).
Then b; € N for all i. We have

1b; — aill2 = lubju* — a2
< |Jubju* — uau*||s + |uaia® — a;l2
= |lu(b; — a;)u*||, + luaia* — a;l
< |1bF — aillz + luaia® — aillz < € + |luaia® — a;l|

<&’ + Jua;a* — a;||2-
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Moreover
lua;u™ — a;lla < |lua;u® —ua;||2 + ||Jua; — ail|2
= [Juai(w = 1), + [[(u = Das]]
< laallllw” = Tll2 + [Ju = 1f|2]|aq]|
= 2llagllllu — 12 < 2llas[le” < 2ljas]le”.
Therefore [|b; — a;]| < (2]|a;|| +1)e” < € for all i. O
Lemma 4.3. For any
e peEN,
® ay,...,am €M,
o c€ P(M) such that T(e) = % and ea; = ae =a; fori=1,...,m,
e >0

there exists n € N such that for any ¢ > n with p | q there exists N C M such that
(1) N is a subfactor of type 1,
(2) e€e N,
(3) there exist by,...,bym € N such that ||b; — a;||2 < & and eb; = b;e =b; fori=1,...,m.

Proof. We use Lemma 4.2 for p, ay,...,am, €, € to get n € N and for any ¢ > n with p | ¢ a
subfactor N C M of type I, with elements b}, ...,b}, such that
Hbil—ai||2<€, (i=1,...,m).
Define b; = ebge to get elements of IV such that b;e = eb; = b;. Moreover
||bz — ai||2 = He(bll — ai)eHQ <e€

fori=1,...,m. O
Lemma 4.4. For any

e peEN,

® ai,...,am € M;

e Ny C M a subfactor of type I,

e ¢ € P(Ny) such that T(e) = % and ea; = ae = a; fori=1,...,m,

e >0

there exists n € N such that for any ¢ > n with p | q there exists N C M such that
(1) N is a subfactor of type 1,
(2) Ny C N,
(3) there exist by,...,bym € N such that ||b; — a;||2 < & and eb; = bje =b; fori=1,...,m.

Proof. We have 7'|N0 = %Tr. Also e € Ny a projection of Tr-trace equal to 1. Let {wk }x,i=1,..p
be a matrix unit basis of Ny such that w;; = e. We have

p
E wi ) = 1.
k=1

From Lemma 4.3 applied to p, a1,...,an, e and € we obtain n € N and for any ¢ > n with p | ¢ a
subfactor N C M of type I; and by,...,b, € N such that

llbi — aill2 < e

and eb; = b;e = b; for all i. N
Since N is a factor of type I, and p | ¢ there is a system of matrix units {ug;}r =1, p in N

such that
p
Y ug=1
1=1

and e = uq,1.
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Define
p ~
U= E Wy 11,1 € NoN C M.
=1
Then we check that U is unitary:
p %, P p
UrU = <E wz,1u1,l> (E wk,1u1,k> = E UL W W, 181k
1=1 k=1 k=1
p p p p
= g u1,l(§ wl,lwk,lul,k) = E uz,1(§ 5l,kw1,lul7k>
=1 k=1 1=1 k=1
p p
= g Up W11 = E Uy, 1€euy
1=1 1=1

I
NE

P P
Up U1 UL, = E Up1U1, = E u = 1.
=1 =1

Il
-

and

p P *
UU* = (Z wz,1u1,l> (Z wk,WLk)
=1 k=1

p p
= E WU U1 W | = E w107 51,1 W1k

k=1 k=1
P p

= E Wy kU1,1 W1k = g Wi, kEeW1 k
k=1 k=1
P P

= E Wy pW1,1W1 | = E wypwE =1
k=1 k=1

Moreover we have

p p p
Ue= E wy iUy e = E wy UL ULL = E wy101,1U1,1 = W1,1U1,1 = €,
=1 =1 =1

p p p
el = E ewy 1y, = E Wy, 1W U1 = E d1, 0wy 1U1, = W1,1U1,1 = €.
=1 =1 =1

and
p p
Uug, = g Wy UL p U, = E Wy 107, kU1, = Wi, 1u1 1,
r=1 r=1
p p
wi, U = E W, (W1 UL, = § Ol rwg Uy » = W 11,
r=1 r=1
so that
k%
Uup U™ = w1, kil=1,...,p.

Now we define N = UNU*. Then obviously N C M is a subfactor of type I,. We have

11

e b; € N for all i because Ub;U* = U(ebje)U* = (Ue)b;(Ue)* = ebe = b; (remember that

we had ||b; — a;||2 < € from the beginning).

e Ny C N because wy,; = Uuy U* € N for all k,l and Ny = span{wy |k, =1,...,p}.

Lemma 4.5. For any
e peEN,
® ay,...,a, €M,

O
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e No C M a subfactor of type I,
o c>0
there exists n € N such that for any g > n with p | q there exists N C M such that
(1) N is a subfactor of type 1,
(2) No C N,
(3) there exist by, ..., by € N such that ||b; — a;||2 < e.

Proof. Let {wg,}r=1,... p be a matrix unit basis in Ny and let e = wy ;. Define for i = 1,...,m
and k,l =1,...,p elements
a};’l = wy pa;wi € M.
Note that we have
eai,z = a?;,ze = afg,l
fori=1,...,mand k,l=1,...,p.
Now we use Lemma 4.4 for p, {a}w} i=1...m €, No and

JA=1,...,p

/ €
g = 3.
P2

We obtain n € N and for any ¢ > n with p | ¢ a subfactor N C M of type I, such that Ny C N

containing elements {b}'c)l} i=1..,m such that
J=1,....p

3 3 /
bk — akllz <€
and! _ _ '
eb;c,l = b%,ze = b;ﬁ,l
for all 4, k, 1.
Define

P
bi = Z wk71b27lw171 eN
k=1
(since Ny C N). Now note that we have

D
i
a; = E Wk, 10 W11

k=1
(indeed:
p ) p p
Z W,10) W1, = Z Wk 1 W1 kW] W1, = Z wy ko;wy; = la;l = a;
k=1 k=1 k=1

for all 4, k, 1) so that
p

Z wk,l(bz,l - az,z)wl,l

k=1

P
< Z 151 — agalls < p*e’ =e.
2 ki=1

16i — aill2 =

Lemma 4.6. Let (p1,p2,ps,.-.) be a sequence of natural numbers such that
® pi | pit1 for all i,

® p —— 00
1— 00

there exists a subsequence (pi,)ken Of (Pi)ien such that M is AFD(piy, Pigs Disgs- - - )-

fThis last condition actually is not necessary for the rest of the proof.
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Proof. First fix an so-dense® sequence (a;);en in M. We will choose inductively indices i.i2, i3, . . .
and for each k a subfactor Ny C M of type Ip,, insuch a way that

Ni C Ny CN3C---

o 1
M = (U Nk) .
k=1
Let p;, = 1 and Ny = C1. Now assume that i1,42,...,i,_1 and Ny, Na,..., Ny_1 have been

chosen so that N; is a type Ipil factor and N; C Nj41. We use Lemma 4.5 for p;,_,, a1,...,ax,

Ni_1 and € = % This gives a number n € N and we choose iy so that p;, > max{n,p; _,}.

Then p;, , | p;,. For this p;, there is a subfactor N C N of type Ipik such that Np_1; C Ny and
containing elements

and

by,...,bF € Ny
with
167 — ailla <& = %
for i =1,..., k. In particular, we have for j € N

k
R A —T}
O

Fact 4.7. Let r,q,s € N be such that r | ¢ and ¢ | s. If R is a type I, subfactor of a type I, factor
S then there exists a type I, factor @) such that

RcQcs.
Theorem 4.8. Let (p1,p2,ps,...) be a sequence of natural numbers such that
® pi | pit1 for all i,

® p —— o0
1— 00

Then M is AFD(p1,p2,ps,-..).
5. IMPLICATION “AFD(B) = AFD(A)”

If N is a finite-dimensional von Neumann algebra then N is a (finite) direct sum of type I
factors:

N =M, (©).
s=1
We let {w; ;} s=1,.. be the matrix units in N. Thus {w},;} s=1,..,r is a basis of N. We will
k= 7 k=1

JA=1,..., qs 1=1,..., qs
also use the symbols Ey,..., E, to denote the central projections:

ds
ES = E U}Zyk.
k=1

Lemma 5.1. Let M be a type 11y factor. Then for any ¢ € N there exists a type 1, subfactor
No C M.

Proof. There are projections E, ..., E, in M such that

=1

and 7(E;) = % for all 4. Indeed, take Ey with 7(Eq) = % and then (by comparability) there exists
Ey with 7(Es) = % and Fy <1 — F; and so on.
Since E; ~ E; for all ¢, there exists w; 1 € M such that

* *
wi71wi71 = Ei ’wi71wi71 = El.

8Here separability of /7 is needed.
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Define
Wi j = Wi1wj
fori,j=1,...,q and let
Ny = span{wi,j ‘i,j =1,... ,q}.

0

Proposition 5.2. Let N C M be a not necessarily unital finite-dimensional subalgebra of M and
let g € N. If

qr(wi ;) € N
for all s € {1,...,r} then there exists a subfactor NcM of type 1, such that

NCN.
Proof. For a fixed s € {1,...,7} we have wj ; ~ w{ ; for all k because
wi,k(wi,k)* = wf,p (wik)*wik = wZ,k~
It follows that
r(wh ) = B )

for some ps; € N.
We will assume that

ZE ~ 1. (3)

This is the case only if NV is a unital subalgebra of M (i.e. what we always mean by a subalgebra),
but here we explicitly allow the case when the unit of N is not equal to the one of M. The
solution is to replace N by the algebra N1 generated by N and 1. This means that we add to

N one projection E,y; =1 — > F, and put wﬁl = FE,4+1 (no other matrix units in this extra
s=1
summand). We want to prove the proposition for this extended version Nt of N and thus have

it also for the N. The point is that we have to check that
QT(wfﬁl) € N.

But this readily follows because
s
gr(with) =q =) qr(w})).
s=1

We can either extend N to N or, in other words, assume (3).
From (3) and (2) we have
Z qsPs = 4.
s=1

Define o = 0 and
li =p1q1,
li = p1g1 + p2g2,

le=piqn+-+pagr =g
Now recall from Lemma 5.1 that there exists a subfactor Ny C M of type I,. Let {u; }ij=1,. 4

be its matrix unit basis. Define"
lS

F, = E Uk, & s=1,...,r
k=ls_1+1

hThe projections Fi, ..., F, do not play any special role in the proof, but writing them out helps in seeing how
the remaining matrix units are constructed.



and

The projections Fy, ..
elements {W7 }ri=1,... 4
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Ps
W]:,l = E uls_1+(k71)ps+i,ls_1+(l71)ps+i7 s = 17 Ty k7l =
=1

are matrix units of order ¢, with

qs
E Wi,ik = FS.
k=1

s

Moreover Wi, € No C M for all s, k1.
We have that u; ; ~uy 1 fori=1,...,¢, and

q
E ui; =1,
i=1

T(um) = =

for all 4. It follows that

T(sz,k) = %5 = T(wz,k>

for all s and k. By comparability there exists vy, ...,v,. € M such that

Put

Then

and

S
d
I

* _ s * _ .8
vgus = Wi 4, VsUg = WY 3.

T gs

U= ZZwZJQ}SWik € M.

s=1k=1

r Qs T 4y
/7 !’
*
(> weaiuie) (X 3wt

s=1k=1 s'=1k'=1

§ : 5 % s s’ s’
Wk71?]8 kawk,)l US/W],/C’
s,s’ k,k’ v

1)

s
s,slék,k’le

— S * S S
= E Wk,1”sw1,1UsW1,k

s,k
= E Wi 1 ViU Vs Vs Wi
s,k 5 \2
(Wl,l)
_ s s s __ s s __ s _
= E WA WE Wiy = E Wi Wiy, = g Wip=1
s,k s,k s,k

T qs T qs!
* § § E 4 * s
UU”* = ( w,‘;lUSWf:k) < Wks/,lvs’wl,k')
1

s=1k=1 s'=1k'=1

_ § s s s’ * s
= 'LU]C71'US Wl,ka’J. ’US/'LUl)k:/
s,s",k,k’ v

8w Sp Wi

s

_ s s *, S
= E wk,1”sW1,1Usw1,k
s,k

_ s * * s
= E W, 1 VsVg UsUg WY gy
N——

s,k s
(wi 1)?

_ s s s _ s s _ s _
= E W1 W1 1W1 g = E Wg 1 Wy = § Wy =1
s,k s,k s,k

1,...

yQs-

15

., F,. are mutually orthogonal and sum up to 1, while for fixed s the
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so that U is unitary. Moreover

T Qs
a __ 2 E s s a _ ,.a a a __ ,.a a

UWb,C = wa'US Wl,ka,C = wb,l”awl,bWb,c = wb71'UaW1,c,

s=1k=1 —
05,00k b W7 .
T qs
a _ a s s __ ,.a a
wb,cU = E E Wy Wi 1 UsWLk = wb,ﬂan,cv

6a,séc,kw;1

which means that
UWg, =wyp U
for all s, k,l. Now we define N = UNyU*. Then N is a subfactor of M of type I, and it contains
the basis {wy;} s=1,..r of N,;so N C N. O
k,l=1,...,qs

Remark 5.3. The proof of the above proposition may be also accomplished in a more direct
way. Namely, one can construct N “around” N instead of taking an auxiliary I, subfactor Ny,
constructing matrix units inside Ny corresponding to the basis of N and then a unitary which
“rotates” Ny onto a subfactor N containing N. In this way one would simply reprove Lemma 5.1
within the proof of Proposition 5.2. However, Lemma 5.1 illustrates a crucial feature of factors,
so we included it in this presentation.

Lemma 5.4. Let N C M be a finite-dimensional subalgebra. Then for any € > 0 there exists
n € N such that for any q > n there is a projection e € (M N N') such that

(1) T(1—¢) <e,
(2) gr(ewi;) EN fors=1,...,r.

Proof. Let n € N be the greater than the two numbers

3

s \—1 1
123%{7(101,1) } and c G-
t=1
Then for ¢ > n we have
QT(wiq,l) >1
fors=1,...,r and
T —1
qe (Z %) > 1
t=1

Therefore, for each s, there exists ks € N such that

In other words

and % #0.
Now for each s there exists g° € (M) such that
T(g) =" and g <wi,

(by comparability).
Of course we have



UNIQUENESS OF HYPERFINITE TYPE II; FACTOR 17

For a fixed s = 1,...,r and k = 1,...,¢s we define gy = wy ;9°wy, < wy,. Then gj =
9%, 95, ., 9,, are pairwise orthogonal and equivalent. Indeed: for [ # k we have
gr <wp . Lwi > g7
and
w;‘;,zgi = wi,zwilg‘“’wiz = wi‘é,lgswiz = wi,lgswi’,kwi,z = szz,r (4)
Moreover if s; # s or I3 # I then

w,ijll glsj =0 and gf; u)lsllJc =0.
Put .
T s
=Y S gen
s=1k=1
We have
T qs T Qs s Qs
T—e=) > wip—) > 0i=) > (wi,—gi) (5)
s=1 k=1 s=1 k=1 s=1 k=1
Now recall that i, o
P, — gf) = rwi, — ¢°) < s<z qt) |

t=1
Applying conjugation x — wj, jzwy ;. to the estimate above we obtain

T —1
- gf) = ot~ 0 <o( L)
t=1

and so, by (5),
T(l—¢)<e.
Now the calculation

T qt T qt
S _ s t s t s s
Wy, € = E E Wy 19p = E E ds,t01,pW}, 19, = W 197,

t=1 p=1 t=1p=1
r qt r qt
s t, s __ t, s __ 5,8
ewy, ; = E E gpWy | = E E 0t,50p.kGpWh | = JRWh
t=1 p=1 t=1 p=1

and (4) imply that e € N'.

Finally
ewiy =97 = 9",
so that
rewt,) = (g") =
and ¢7(ew? ;) =ks € Nfor s =1,...,7. O

Theorem 5.5. Let M be a type 11y factor which is AFD(B). Then M is AFD(A).
Proof. Let aq,...,am a~nd € > 0 be given. We must show that there exists n € N such that for
any ¢ > n a subfactor N C M of type I, can be found containing elements by, ..., by, such that
1b; — a;ll2 < e.
Since M is AFD(B), there exists a finite-dimensional subalgebra N C M and elements
b, 00 €N

such that
69 — aill2 < .

The algebra N has matrix unit basis {wj ;} s=1,.. . Let us now apply Lemma 5.4 to N and
Tk l=1,...,qs

, 2

— 13

€= (2 Thax |\bg||) :
1<i<m
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Thus we obtain n € N and for any ¢ > n a projection e € M N N’ such that
T(l—e)<é

and

fors=1,...,r.
Consider now the finite-dimensional non-unital subalgebra N, = eNe = eN = Ne. It has a
matrix unit basis'

{€UJZJ} s=1,...,7 (6)
k=1

=1,..,¢s
By Proposition 5.2 there exists a subfactor N of type I such that

N.CNC M.

Define now B
by =eb? € N, C N, i=1,---,m.

1L —ellz = V(1 —¢) < VE,

17 = bill2 = [[6?(1 — €)||, < BV
Thus by the definition of £’ we have

Note that since

we get

16 — b7 ll2 < 5
and we obtain
1 = ailla < 1|b; — Y12 + [1b) — aill2 < e

ITo see that the set (6) is really a basis let us compute (using the fact that e € N’ and that T is a trace) the
scalar product of its arbitrary elements:

T((ewi, )" (ewys 1)) = 7(w] ews 1)
= T(ew] i )
= 05,516k, k'T(ewlsyl,)
= 65,510k, k/T(ewf’lw‘f’lwil,)
= 0§55/ 0k, k/T(wlS’lewilwil,)
=d, 40k, k’T(ewilwil,wls’l)
= 85,50k, k' 8y 7 (ewd qwi 1) = 85 /O or 6y 1 T (0F 7).

It follows that the system (6) is orthogonal, hence linearly independent.



