
UNIQUENESS OF HYPERFINITE TYPE II1 FACTOR

Abstract. These notes are devoted to the exposition of Murray & von Neumann’s proof of the
theorem that any two hyperfinite II1 factors are isomorphic.

1. Von Neumann algebras, factors

Let H be a Hilbert space. Throughout these notes we assume that H is separable. A von
Neumann algebra is a self-adjoint unital ∗-subalgebra M of B(H ) closed in the w-topology.a

Equivalently M = M ′′, where for any S ⊂ B(H ) we define its commutant by

S′ =
{
x ∈ B(H ) xs = sx for all s ∈ S

}
and double commutant S′′ = (S′)′.

For a convex set, being closed in the w-topology is equivalent to being closed in a number of
other topologies like

• the so-topology defined by family of seminorms

B(H ) 3 a 7−→ ‖aξ‖, ξ ∈H

• the wo-topology defined by family of seminorms

B(H ) 3 a 7−→
∣∣(η aξ)∣∣, ξ, η ∈H .

A von Neumann algebra M is a factor if the center Z (M) = M ∩M ′ of M is equal to C1.
We denote the set of projections in M by

P(M) =
{
p ∈M p∗p = p

}
and unitary elements by

U (M) =
{
u ∈M u∗u = uu∗ = 1

}
.

By a subalgebra of a von Neumann algebra N we shall almost alwaysb mean a unital w-closed
∗-subalgebra N ⊂M . A subfactor is a subalgebra which is a factor.

1.1. Comparison theory, comparability.

Definition 1.1. Let p, q ∈P(M). We say that
(1) p ≤ q if pq = p,
(2) p ∼ q if there is u ∈M such that u∗u = p and uu∗ = q,
(3) p 4 q if there is r ∈P(M) such that p ∼ r ≤ q.

Both “≤” is a partial order on P(M) and “4” is a partial order on P(M)/ ∼. The antisym-
metry of “4” is expressed by the so called Schröder-Bernstein theorem.

Theorem 1.2. For p, q ∈P(M) there exists z ∈P
(
Z (M)

)
such that

pz 4 qz, p(1− z) < q(1− z).

It follows that if M is a factor then “4” defines a total order on P(M).

aThe w-topology is the weak∗ topology coming from the duality B(H ) = T (H )∗.
bI.e. unless explicitly sated otherwise.
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1.2. Type II1 factors.

Definition 1.3. A factor M is of type II1 if M is infinite-dimensional and M possesses a faithful
tracial normal state.

The true definition of a type II1 factor is that M is such if M is a factor without minimal
projections and whose unit 1 is a finite projection, i.e. that 1 is not equivalent to a projection
p � 1. It is a theorem that M is a II1 factor if and only if it satisfies the conditions of Definition
1.3. It is also known that any trace on a factor is automatically faithful and normal (so these
conditions are not necessary in Definition 1.3). One can also prove that a trace on a factor is
unique (if it exists).

Theorem 1.4. Let M be a II1 factor and let τ be its trace. Then for any r ∈ [0, 1] there exists
p ∈P(M) such that τ(p) = r.

2. Preliminary results

Let M be a von Neumann algebra with a faithful state τ . Then we can define a positive definite
scalar product on M by

(a b) = τ(a∗b).
The associated norm a 7→

√
(a a) will be denoted by ‖ · ‖2 (the state τ will be fixed). We have

that for any a, b ∈M the following estimate holds:

‖ab‖2 ≤ ‖a‖‖b‖2.
Indeed,

‖ab‖22 = (ab ab) = τ
(
(ab)∗ab

)
= τ(b∗a∗ab) ≤ ‖a‖2τ(b∗b) = ‖a‖2‖b‖22

because a∗a ≤ ‖a‖21 and τ is positive.
It τ is a trace then we have also

‖bc‖2 ≤ ‖b‖2‖c‖
so that

‖abc‖2 ≤ ‖a‖‖b‖2‖c‖
for all a, b, c ∈M .

From now on we assume that M is a von Neumann algebra with a faithful tracial state. The
symbol ‖ · ‖2 will denote the associated norm.

Lemma 2.1. For any selfadjoint a, b ∈M we have∥∥a+i1
a−i1 −

b+i1
b−i1

∥∥
2
≤ 2‖a− b‖2.

Proof. We have
a+i1
a−i1 −

b+i1
b−i1 = (a− i1)−1

(
(a+ i1)(b− i1)− (a− i1)(b+ i1)

)
(b− i1)−1

= −2i(a− i1)−1(a− b)(b− i1)−1.

Therefore, since ‖(a− i1)−1‖, ‖(b− i1)−1‖ ≤ 1 (as a = a∗ and b = b∗) we obtain∥∥a+i1
a−i1 −

b+i1
b−i1

∥∥
2
≤ 2‖(a− i1)−1‖‖a− b‖2‖(b− i1)−1‖ ≤ 2‖a− b‖2.

�

Lemma 2.2. Let f ∈ C(T). For any ε > 0 there exists ω1(ε) > 0 such that(
u, v ∈ U (M),
‖u− v‖2 < ω1(ε)

)
=⇒

(∥∥f(u)− f(v)
∥∥

2
< ε
)
.
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Proof. If f1, f2 ∈ C(T) thenc∥∥f2(u)− f2(v)
∥∥

2
≤
∥∥f1(u)− f2(u)

∥∥
2

+
∥∥f2(u)− f2(v)

∥∥
2

+
∥∥f1(v)− f2(v)

∥∥
2

≤
∥∥f2 − f2∥∥∞ +

∥∥f2(u)− f2(v)
∥∥

2
+
∥∥f2 − f2∥∥∞.

Therefore, if for any ε a constant ω̃1(ε) satisfying(
u, v ∈ U (M),
‖u− v‖2 < ω̃1(ε)

)
=⇒

(∥∥f̃(u)− f̃(v)
∥∥

2
< ε
)
.

can be found for f̃ a trigonometric polynomial, then an analogous constant can be given for
any f ∈ C(T) (indeed, take a trigonometric polynomial f̃ such that ‖f̃ − f‖∞ < ε

3 and define
ω1(ε) = ω̃1( ε3 )).

Therefore let us assume that f is a trigonometric polynomial

f(µ) =
M∑

n=−N
αnµ

n, µ ∈ T.

Then ∥∥f(u)− f(v)
∥∥

2
≤

M∑
n=−N

|αn|‖un − vn‖2

=
N∑
n=1

|α−n|‖u∗n − v∗n‖2 +
M∑
n=0

|αn|‖un − vn‖2

=
N∑
n=1

|α−n|‖un − vn‖2 +
M∑
n=0

|αn|‖un − vn‖2

=
N∑
n=1

|α−n|
∥∥∥∥ n∑
k=1

uk−1(v − v)vk−1

∥∥∥∥
2

+
M∑
n=0

|αn|
∥∥∥∥ n∑
k=1

uk−1(v − v)vk−1

∥∥∥∥
2

≤
N∑
n=1

|α−n|
( n∑
k=1

‖uk−1(u− v)vk−1‖2
)

+
M∑
n=0

|αn|
( n∑
k=1

‖uk−1(u− v)vk−1‖2
)

≤
N∑
n=1

|α−n|
( n∑
k=1

‖(u− v)‖2
)

+
M∑
n=0

|αn|
( n∑
k=1

‖(u− v)‖2
)

= ‖(u− v)‖2
M∑

n=−N
|n||αn|

Therefore for such f we can take

ω1(ε) =
( M∑
n=−N

|n||αn|
)−1

ε.

�

Lemma 2.3. Let g ∈ C0(R)+ for which lim
t→+∞

g(t) = lim
t→−∞

g(t). Then for any ε > 0 there exists

ω2(ε) > 0 such that (
a, b ∈M, a = a∗, b = b∗,
‖a− b‖2 < ω2(ε)

)
=⇒

(∥∥g(a)− g(b)
∥∥

2
< ε
)
.

cNote that ‖a‖2 =
p
τ(a∗a) ≤

p
‖a∗a‖ = ‖a‖ for any a ∈M .
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Proof. A function g with the properties as in the statement of the lemma corresponds to a unique
continuous function f on T via

f(µ) =

{
g
(
iµ+1
µ−1

)
µ 6= 1,

lim
t→±∞

g(t) µ = 1.

In other words
g(t) = f

(
t+i
t−i

)
.

Let
u = a+i1

a−i1 , v = b+i1
b−i1 .

Then
g(a) = f(u) and g(b) = f(v).

As f ∈ C(T), Lemma 2.2 gives us a function ε 7→ ω1(ε). Put ω2(ε) = 1
2ω1(ε). Then since

‖u− v‖2 ≤ 2‖a− b‖2
(by Lemma 2.1), we have that ‖a− b‖2 < ω2(ε) guarantees that∥∥g(a)− g(b)

∥∥
2

=
∥∥f(u)− f(v)

∥∥
2
< ε.

�

Proposition 2.4. For any ε > 0 there exists ω3(ε) > 0 such that if N is a subalgebra of M ,
e ∈ P(M) and a ∈ N is such that ‖a − e‖2 < ω3(ε) then there exists f ∈ P(N) such that
‖f − e‖2 < ε.

Proof. We have∥∥ 1
2 (a+ a∗)− e

∥∥
2

=
∥∥ 1

2 (a+ e)− 1
2 (a∗ − e)

∥∥
2
≤ 1

2

(
‖a− e‖2 + ‖a∗ − e‖2

)
= ‖a− e‖2

In other words we may (by replacing a by 1
2 (a + a∗) if necessary) that a = a∗ and any estimate

on ‖a− e‖2 will still hold.
Define g1, g2 ∈ C0(R)+ by

g1(t) =


1 |t| ≥ 1,
2|t| − 1 1

2 ≤ |t| < 1,
0 |t| ≤ 1

2 ,

g2(t) =

{
1 |t| ≥ 1

2 ,

2|t| |t| < 1
2 .

Then Lemma 2.3 applies to both g1 and g2. Let ω′2(ε) be the smaller of the values ω2(ε) which
Lemma 2.3 gives for g1 and g2 and let

ω3(ε) = ω′2
(
ε
2

)
.

Now let h(t) = χ
(
|t| ≥ 1

2

)
and

f = h(a) ∈P(M).
Since g1(t) = g2(t) = h(t) = t for any t in the spectrum of f

g1(f) = g2(f) = h(t) = f.

Moreover, since (
1− h(t)

)
g1(t) + h(t)g2(t) = h(t)d

we have
(1− f)g1(a) + fg2(a) = f.

If ‖a− e‖2 < ω3(ε) then∥∥g1(a)− g1(e)
∥∥

2
< ε

2 and
∥∥g2(a)− g2(e)

∥∥
2
< ε

2 .

dIn fact
`
1− h(t)

´
g1(t) = 0 and h(t)g2(t) = h(t).
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But g1(e) = g2(e) = e (both functions coincide with identity on spectrum of e) so that∥∥g1(a)− e
∥∥

2
< ε

2 and
∥∥g2(a)− e

∥∥
2
< ε

2 .

It follows that∥∥(1− f)
(
g1(a)− e

)
+ f

(
g2(a)− e

)∥∥
2
≤
∥∥(1− f)

(
g1(a)− e

)∥∥
2

+
∥∥f(g2(a)− e

)∥∥
2

= ‖1− f‖
∥∥g1(a)− e

∥∥
2

+ ‖f‖
∥∥g2(a)− e

∥∥
2

≤
∥∥g1(a)− e

∥∥
2

+
∥∥g2(a)− e

∥∥
2
< ε.

Now we note that

(1− f)
(
g1(a)− e

)
+ f

(
g2(a)− e

)
=
(
(1− f)g1(a) + fg2(a)

)
− e = f − e

so that ‖f − e‖2 < ε. �

The next proposition can be proved using Lemma 2.4

Proposition 2.5. Let S ⊂M be an algebra. Then the following conditions are equivalent:
(1) S is strongly closed,
(2) S is closed in the metric defined by ‖ · ‖2.

Lemma 2.6. For any ε > 0 there exists ω4(ε) > 0 such that for any e, f ∈P(M) such that

‖e− f‖2 < ω4(ε)

there exists a partial isometry w ∈M with w∗w ≤ e and ww∗ ≤ f and such that

‖e− w‖2 < ε.

Proof. Let a = fe has polar decomposition a = w|a| with |a|, w ∈ M . The partial isometry w
satisfies

w∗w ≤ e
because

Ranw∗w = (ker a)⊥ = Ran a∗ = Ran ef ⊂ Ran e.
In particular we = ww∗we = w(w∗w e) = w(w∗w) = ww∗w = w. Similarly

ww∗ ≤ f
because

Ranww∗ = Ran a = Ran fe ⊂ Ran f.
Let g ∈ C0(R)+ be the function

g(t) =

{√
|t| |t| ≤ 1,

1 |t| > 1.

Then g
(
|a|2
)

= |a| or, in other words,
g(efe) = |a|.

Lemma 2.3 provides for ε > 0 the number ω2(ε) related to the function g. Let

ω4(ε) = min
{
ω2

(
ε
2

)
, ε2
}
.

This choice guarantees that

‖e− efe‖2 =
∥∥e(e− f)e

∥∥
2
≤ ‖e− f‖2 < ω4(ε) ≤ ω2

(
ε
2

)
,

so that ∥∥e− |a|∥∥
2

=
∥∥e− g(efe)

∥∥
2

=
∥∥g(e)− g(efe)

∥∥
2
< ε

2

and ∥∥w − a∥∥
2

=
∥∥w − w|a|∥∥

2
=
∥∥w(e− |a|)∥∥

2
< ε

2 .

This means that ‖w − fe‖2 < ε
2 .

On the other hand
‖fe− e‖2 =

∥∥(f − e)e
∥∥

2
≤ ‖f − e‖2 < ε

2 .
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It follows that
‖w − e‖2 ≤ ‖w − fe‖2 + ‖fe− e‖2 < ε.

�

Lemma 2.7. Let u ∈ U (M) and w ∈ M is a partial isometry such that ux = wx for all
x ∈ Ranw∗w, then

‖u− w‖2 ≤
√

2‖w − 1‖2
Proof. Since u and w agree on the orthogonal complement of kerw which is the range of w∗ we
have

uw∗ = ww∗

and so
wu∗ = (ww∗)∗ = ww∗.

Therefore
(u− w)(u− w)∗ = uu∗ − wu∗ − uw∗ + ww∗ = 1− ww∗

and
‖u− w‖2 =

√
τ
(
(u− w)(u− w)∗

)
=
√
τ(1− ww∗).

Finally

τ(1− ww∗) = τ
(
−(w − 1)1∗ − w(w − 1)∗

)
= τ

(
−(w − 1)1∗

)
− τ
(
w(w − 1)∗

)
≤
∣∣τ((w − 1)1∗

)∣∣+
∣∣τ(w(w − 1)∗

)∣∣
≤
∣∣τ(1∗(w − 1)

)∣∣+
∣∣τ((w − 1)∗w

)∣∣
=
∣∣(1 w − 1)

∣∣+
∣∣(w − 1 w)

∣∣
≤ ‖1‖2‖w − 1‖2 + ‖w − 1‖2‖w‖2 ≤ 2‖1− w‖2

because ‖w‖22 = τ(w∗w) ≤ τ(1) = 1. �

Proposition 2.8. Let M be a II1 factor. For any ε > 0 there exists ω5(ε) > 0 such that for any
e, f ∈P(M) with τ(e) = τ(f) and such that

‖e− f‖ < ω5(ε)

there exists U ∈ U (M) such that
e = UfU∗

and
‖U − 1‖2 < ε.

Proof. We choose ε′ > 0 such that
2(
√
ε′ + ε′) < ε

and we put
ω5(ε) = ω4(ε′).

By Lemma 2.6 there is a partial isometry w0 such that

w∗0w0 ≤ e, w0w
∗
0 ≤ f

and
‖w0 − e‖2 < ε′.

Now we note that
τ(e− w∗0w0) = τ(f − w0w

∗
0).

Since M is a II1 factor, there is a partial isometry v0 such that

v∗0v0 = e− w∗0w0, v0v
∗
0 = f − w0w

∗
0 .

Put
u0 = w0 + v0.
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Then u0 is a partial isometry and

u∗0u0 = e, u0u
∗
0 = f.

We can repeat the above construction with 1− e and 1− f in place of e and f because∥∥(1− e)− (1− f)
∥∥

2
= ‖e− f‖2 < ω4(ε′).

This gives us a partial isometry w1 ∈M such that

w∗1w1 ≤ 1− e, w1w
∗
1 ≤ 1− f

and ∥∥w1 − (1− e)
∥∥

2
< ε′.

Also we get v1 as above and a partial isometry u1 = w1 + v1 with

u∗1u1 = 1− e, u1u
∗
1 = 1− f.

Define now
W = w0 + w1, U = u0 + u1.

It is simple to see that U is unitary and W is a partial isometry. Moreover

f = UeU∗

(UeU∗ = (u0 + u1)e(u∗0 + u∗1) = (u0 + u1)u∗0u0(u∗0 + u∗1) = (u0 + u1)u∗0 = u0u
∗
0 = f).

Moreover U and W agree on (kerW )⊥. Therefore, by Lemma 2.7,

‖U −W‖2 ≤
√

2‖W − 1‖2.
Recall that

‖W − 1‖2 = ‖w0 + w1 − 1‖2 =
∥∥w0 − e+ w1 − (1− e)

∥∥
2
≤ ‖w0 − e‖2+

∥∥w1 − (1− e)
∥∥

2
< 2ε′.

Thus

‖U − 1‖2 ≤ ‖U −W‖2 + ‖W − 1‖2 ≤
√

2‖W − 1‖2 + ‖W − 1‖2 <
√

4ε′ + 2ε′ < ε.

�

3. Approximate finite-dimensionality

Definition 3.1. Let (p1, p2, p3, . . . ) be a sequence of natural numbers. We say that M is
AFD(p1, p2, p3, . . . ) if there exists a sequence (Ni)i∈N of subalgebras of M such that

(1) Ni is a factor of type Ipi
,

(2) N1 ⊂ N2 ⊂ N3 ⊂ · · · ,

(3) M =
( ∞⋃
i=1

Ni

)′′
.

Remark 3.2. Two II1 factors which are AFD(p1, p2, . . . ) for some sequence (pi)i∈N are isomorphic.
Indeed, first we produce an isomorphism on dense subalgebras, both isomorphic to

∞⋃
i=1

Mpi .

To extend this isomorphism to completions we note that this isomorphism must preserve the trace
which makes it isometric in ‖ · ‖2. Hence the extension is so-continuous on bounded sets and thus
normal.

Definition 3.3. We say that M is AFD(A) if
(1) for any a1, . . . , am ∈M ,
(2) for any ε > 0

there exists n ∈ N such that for any q ≥ n there exists a subfactor N ⊂M such that
(1) N is a factor of type Iq,
(2) there are b1, . . . , bm ∈ N such that

‖bi − ai‖2 < ε, i = 1, . . .m.
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Definition 3.4. We say that M is AFD(B) if
(1) for any a1, . . . , am ∈M ,
(2) for any ε > 0

there exists a subalgebra N ⊂M such that
(1) dimN <∞,
(2) there are b1, . . . , bm ∈ N such that

‖bi − ai‖2 < ε, i = 1, . . .m.

Definition 3.5. We say that M is AFD(C) if there exists a sequence (Ni)i∈N of subalgebras of
M such that

(1) dimNi <∞ for all i,
(2) N1 ⊂ N2 ⊂ N3 ⊂ · · · ,

(3) M =
( ∞⋃
i=1

Ni

)′′
.

Remark 3.6. The last definition is applicable to any von Neumann algebra M (not necessarily a
II1 factor). An algebra which is generated by an increasing sum of finite-dimensional subalgebras
is called hyperfinite or injective.e

Theorem 3.7 (Murray & von Neumann 1943). Let M be a II1 factor on a separable Hilbert space
and let (p1, p2, p3, . . . ) be a sequence of natural numbers such that

• pi | pi+1 for all i,
• p1 −−−→

i→∞
∞.

Then the following conditions are equivalent:
(1) M is AFD(p1, p2, p3, . . . ),
(2) M is AFD(A),
(3) M is AFD(B),
(4) M is AFD(C).

The obvious implications are:

AFD(p1, p2, p3, . . . ) =⇒ AFD(C)

and
AFD(A) =⇒ AFD(B).

Also the implication
AFD(C) =⇒ AFD(B).

is not difficult due to Proposition 2.5.

4. Implication “AFD(A) ⇒ AFD(p1, p2, p3, . . . )”

In this section we assume that M is a II1 factor which is AFD(A).

Lemma 4.1. For any
• p ∈ N,
• a1, . . . , am ∈M ,
• e ∈P(M) such that τ(e) = 1

p ,
• ε > 0

there exists n ∈ N such that for any q ≥ n with p | q there exists N ⊂M such that
(1) N is a subfactor of type Iq,
(2) there exist b1, . . . , bm ∈ N such that ‖bi − ai‖2 < ε,
(3) there exists f ∈P(N) such that τ(f) = 1

p and ‖f − e‖2 < ε.

eSuch algebras happen to be precisely the injective objects of the category of von Neumann algebras with
separable preduals and normal completely positive unital maps as morphisms.
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Proof. Choose ε′′ such that
√
ε′′ + ε′′ < ε and let ε′ = min{ε, ω3(ε′′)}, where ω3 is taken from

Proposition 2.4. Then let us use the property AFD(A) for the data a1, . . . , am, am+1 = e and ε′.
This produces a natural n and for any q ≥ n a subfactorN ⊂M of type Iq and b1, . . . , bm, bm+1 ∈

N with ‖b1 − ai‖2 < ε′ for i = 1, . . . ,m+ 1.
By Proposition 2.4 there exists f1 ∈P(N) with ‖f1 − e‖2 < ε′′. We have∣∣τ(f1)− τ(e)

∣∣ =
∣∣τ(f1 − e)

∣∣ ≤ ‖f1 − e‖2 < ε′′ (1)

(here we use the Schwartz inequality ∣∣τ(a∗b)
∣∣ ≤ ‖a‖2‖b‖2

for a = 1 and b = f1 − e).
Now N is of type Iq and we only take q such that p | q. Therefore we have f ∈P(N) such that

τ(f) = 1
p and f ≤ f1. Now since f1 − f is a projection, we have

‖f1 − f‖22 = τ
(
(f1 − f)∗(f1 − f)

)
= τ(f1 − f) = τ(f1)− τ(f).

Thus
‖f1 − f‖2 =

√
τ(f1)− τ(f) =

√∣∣τ(f1)− τ(e)
∣∣ < √ε′′

by (1).
It follows that

‖f − e‖2 ≤ ‖f − f1‖2 + ‖f1 − e‖2 <
√
ε′′ + ε′′ < ε.

�

Lemma 4.2. For any
• p ∈ N,
• a1, . . . , am ∈M ,
• e ∈P(M) such that τ(e) = 1

p ,
• ε > 0

there exists n ∈ N such that for any q ≥ n with p | q there exists N ⊂M such that
(1) N is a subfactor of type Iq,
(2) there exist b1, . . . , bm ∈ N such that ‖bi − ai‖2 < ε,
(3) e ∈ N .

Proof. The elements a1, . . . , am and ε > 0 are given, so let

ε′′ = ε
2 max

i
{‖ai‖}+1

Then let ε′ = min{ω5(ε′′), ε′′}, where ω5 comes from Proposition 2.8. Then let us apply Lemma
4.1 with p, a1, . . . , am, e, ε′. This gives us n ∈ N and for any q ≥ n with p | q we obtain a subfactor
N1 ⊂M of type Iq with elements b11, . . . , b

1
m ∈ N1 and a projection f ∈ N1 such that

‖b1i − ai‖2 < ε′, i = 1, . . . ,m

and ‖f − e‖2 < ε′.
From Proposition 2.8 we know that there exists u ∈ U (M) such that

e = ufu∗ and ‖u− 1‖2 < ε′′.

Define N = uN1u
∗. Then N is a subfactor of M of type Iq. Let bi = ub1iu

∗ (i = 1, . . . ,m).
Then bi ∈ N for all i. We have

‖bi − ai‖2 = ‖ub1iu∗ − ai‖2
≤ ‖ub1iu∗ − uaiu∗‖2 + ‖uaia∗ − ai‖2
=
∥∥u(b1i − ai)u∗

∥∥
2

+ ‖uaia∗ − ai‖2
≤ ‖b1i − ai‖2 + ‖uaia∗ − ai‖2 < ε′ + ‖uaia∗ − ai‖2
≤ ε′′ + ‖uaia∗ − ai‖2.
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Moreover
‖uaiu∗ − ai‖2 ≤ ‖uaiu∗ − uai‖2 + ‖uai − ai‖2

=
∥∥uai(u∗ − 1)

∥∥
2

+
∥∥(u− 1)ai

∥∥
2

≤ ‖ai‖‖u∗ − 1‖2 + ‖u− 1‖2‖ai‖
= 2‖ai‖‖u− 1‖2 < 2‖ai‖ε′ ≤ 2‖ai‖ε′′.

Therefore ‖bi − ai‖ <
(
2‖ai‖+ 1

)
ε′′ < ε for all i. �

Lemma 4.3. For any
• p ∈ N,
• a1, . . . , am ∈M ,
• e ∈P(M) such that τ(e) = 1

p and eai = aie = ai for i = 1, . . . ,m,
• ε > 0

there exists n ∈ N such that for any q ≥ n with p | q there exists N ⊂M such that
(1) N is a subfactor of type Iq,
(2) e ∈ N ,
(3) there exist b1, . . . , bm ∈ N such that ‖bi − ai‖2 < ε and ebi = bie = bi for i = 1, . . . ,m.

Proof. We use Lemma 4.2 for p, a1, . . . , am, e, ε to get n ∈ N and for any q ≥ n with p | q a
subfactor N ⊂M of type Iq with elements b11, . . . , b

1
m such that

‖b1i − ai‖2 < ε, (i = 1, . . . ,m).

Define bi = eb1i e to get elements of N such that bie = ebi = bi. Moreover

‖bi − ai‖2 =
∥∥e(b1i − ai)e∥∥2

< ε

for i = 1, . . . ,m. �

Lemma 4.4. For any
• p ∈ N,
• a1, . . . , am ∈M ,
• N0 ⊂M a subfactor of type Ip,
• e ∈P(N0) such that τ(e) = 1

p and eai = aie = ai for i = 1, . . . ,m,
• ε > 0

there exists n ∈ N such that for any q ≥ n with p | q there exists N ⊂M such that
(1) N is a subfactor of type Iq,
(2) N0 ⊂ N ,
(3) there exist b1, . . . , bm ∈ N such that ‖bi − ai‖2 < ε and ebi = bie = bi for i = 1, . . . ,m.

Proof. We have τ
∣∣
N0

= 1
p Tr. Also e ∈ N0 a projection of Tr-trace equal to 1. Let {wk,l}k,l=1,...,p

be a matrix unit basis of N0 such that w1,1 = e. We have
p∑
k=1

wk,k = 1.

From Lemma 4.3 applied to p, a1, . . . , am, e and ε we obtain n ∈ N and for any q ≥ n with p | q a
subfactor Ñ ⊂M of type Iq and b1, . . . , bm ∈ Ñ such that

‖bi − ai‖2 < ε

and ebi = bie = bi for all i.
Since Ñ is a factor of type Iq and p | q there is a system of matrix units {uk,l}k,l=1,...,p in Ñ

such that
p∑
l=1

ul,l = 1

and e = u1,1.
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Define

U =
p∑
l=1

wl,1u1,l ∈ N0Ñ ⊂M.

Then we check that U is unitary:

U∗U =
( p∑
l=1

wl,1u1,l

)∗( p∑
k=1

wk,1u1,k

)
=

p∑
k,l=1

ul,1w1,lwk,1u1,k

=
p∑
l=1

u1,l

( p∑
k=1

w1,lwk,1u1,k

)
=

p∑
l=1

ul,1

( p∑
k=1

δl,kw1,1u1,k

)

=
p∑
l=1

ul,1w1,1u1,l =
p∑
l=1

ul,1eu1,l

=
p∑
l=1

ul,1u1,1u1,l =
p∑
l=1

ul,1u1,l =
p∑
l=1

ul,l = 1.

and

UU∗ =
( p∑
l=1

wl,1u1,l

)( p∑
k=1

wk,1u1, k
)∗

=
p∑

k,l=1

wl,1u1,luk,1w1,k =
p∑

k,l=1

wl,1δl,ku1,1w1,k

=
p∑
k=1

wl,ku1,1w1,k =
p∑
k=1

wl,kew1,k

=
p∑
k=1

wl,kw1,1w1,k =
p∑
k=1

wl,kw1,k = 1

Moreover we have

Ue =
p∑
l=1

wl,1u1,le =
p∑
l=1

wl,1u1,lu1,1 =
p∑
l=1

wl,1δ1,lu1,1 = w1,1u1,1 = e,

eU =
p∑
l=1

ewl,1u1,l =
p∑
l=1

w1,1wl,1u1,l =
p∑
l=1

δ1,lwl,1u1,l = w1,1u1,1 = e.

and

Uuk,l =
p∑
r=1

wr,1u1,ruk,l =
p∑
r=1

wr,1δr, ku1,l = wk,1u1,l,

wk,lU =
p∑
r=1

wk,lwr,1u1,r =
p∑
r=1

δl, rwk,1u1,r = wk,1u1,l,

so that
Uuk,lU

∗ = wk,l, k, l = 1, . . . , p.

Now we define N = UÑU∗. Then obviously N ⊂M is a subfactor of type Iq. We have
• bi ∈ N for all i because UbiU∗ = U(ebie)U∗ = (Ue)bi(Ue)∗ = ebie = bi (remember that

we had ‖bi − ai‖2 < ε from the beginning).
• N0 ⊂ N because wk,l = Uuk,lU

∗ ∈ N for all k, l and N0 = span{wk,l k, l = 1, . . . , p}.
�

Lemma 4.5. For any
• p ∈ N,
• a1, . . . , am ∈M ,
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• N0 ⊂M a subfactor of type Ip,
• ε > 0

there exists n ∈ N such that for any q ≥ n with p | q there exists N ⊂M such that
(1) N is a subfactor of type Iq,
(2) N0 ⊂ N ,
(3) there exist b1, . . . , bm ∈ N such that ‖bi − ai‖2 < ε.

Proof. Let {wk,l}k=1,...,p be a matrix unit basis in N0 and let e = w1,1. Define for i = 1, . . . ,m
and k, l = 1, . . . , p elements

aik,l = w1,kaiwl,1 ∈M.

Note that we have
eaik,l = aik,le = aik,l

for i = 1, . . . ,m and k, l = 1, . . . , p.
Now we use Lemma 4.4 for p, {aik,l} i=1...,m

k,l=1,...,p

, e, N0 and

ε′ = ε
p2 .

We obtain n ∈ N and for any q ≥ n with p | q a subfactor N ⊂ M of type Iq such that N0 ⊂ N
containing elements {bik,l} i=1...,m

k,l=1,...,p

such that

‖bik,l − aik,l‖2 < ε′

andf

ebik,l = bik,le = bik,l
for all i, k, l.

Define

bi =
p∑

k,l=1

wk,1b
i
k,lw1,l ∈ N

(since N0 ⊂ N). Now note that we have

ai =
p∑

k,l=1

wk,1a
i
k,lw1,l

(indeed:
p∑

k,l=1

wk,1a
i
k,lw1,l =

p∑
k,l=1

wk,1w1,kaiwl,1w1,l =
p∑

k,l=1

wk,kaiwl,l = 1ai1 = ai

for all i, k, l) so that

‖bi − ai‖2 =
∥∥∥∥ p∑
k,l=1

wk,1(bik,l − aik,l)w1,l

∥∥∥∥
2

≤
p∑

k,l=1

‖bik,l − aik,l‖2 < p2ε′ = ε.

�

Lemma 4.6. Let (p1, p2, p3, . . . ) be a sequence of natural numbers such that
• pi | pi+1 for all i,
• pi −−−→

i→∞
∞

there exists a subsequence (pik)k∈N of (pi)i∈N such that M is AFD(pi1 , pi2 , pi3 , . . . ).

fThis last condition actually is not necessary for the rest of the proof.
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Proof. First fix an so-denseg sequence (ai)i∈N in M . We will choose inductively indices i1.i2, i3, . . .
and for each k a subfactor Nk ⊂M of type Ipik

in such a way that

N1 ⊂ N2 ⊂ N3 ⊂ · · ·
and

M =
( ∞⋃
k=1

Nk

)′′
.

Let pi0 = 1 and N0 = C1. Now assume that i1, i2, . . . , ik−1 and N1, N2, . . . , Nk−1 have been
chosen so that Nl is a type Ipil

factor and Nl ⊂ Nl+1. We use Lemma 4.5 for pik−1 , a1, . . . , ak,
Nk−1 and ε = 1

k . This gives a number n ∈ N and we choose ik so that pik > max{n, pik−1}.
Then pik−1 | pik . For this pik there is a subfactor Nk ⊂ N of type Ipik

such that Nk−1 ⊂ Nk and
containing elements

bk1 , . . . , b
k
k ∈ Nk

with
‖bki − ai‖2 < ε = 1

k

for i = 1, . . . , k. In particular, we have for j ∈ N
‖bkj − aj‖2 −−−−→

k→∞
0.

�

Fact 4.7. Let r, q, s ∈ N be such that r | q and q | s. If R is a type Ir subfactor of a type Is factor
S then there exists a type Iq factor Q such that

R ⊂ Q ⊂ S.

Theorem 4.8. Let (p1, p2, p3, . . . ) be a sequence of natural numbers such that
• pi | pi+1 for all i,
• pi −−−→

i→∞
∞

Then M is AFD(p1, p2, p3, . . . ).

5. Implication “AFD(B) ⇒ AFD(A)”

If N is a finite-dimensional von Neumann algebra then N is a (finite) direct sum of type I
factors:

N =
r⊕
s=1

Mqs
(C).

We let {wsk,l} s=1,...,r
k,l=1,...,qs

be the matrix units in N . Thus {wsk,l} s=1,...,r
k,l=1,...,qs

is a basis of N . We will

also use the symbols E1, . . . , Er to denote the central projections:

Es =
qs∑
k=1

wsk,k.

Lemma 5.1. Let M be a type II1 factor. Then for any q ∈ N there exists a type Iq subfactor
N0 ⊂M .

Proof. There are projections E1, . . . , Eq in M such that
q∑
i=1

Ei = 1

and τ(Ei) = 1
q for all i. Indeed, take E1 with τ(E1) = 1

q and then (by comparability) there exists
E2 with τ(E2) = 1

q and E2 ≤ 1− E1 and so on.
Since Ei ∼ E1 for all i, there exists wi,1 ∈M such that

wi,1w
∗
i,1 = Ei, w∗i,1wi,1 = E1.

gHere separability of H is needed.
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Define
wi,j = wi,1w

∗
j,1

for i, j = 1, . . . , q and let
N0 = span

{
wi,j i, j = 1, . . . , q

}
.

�

Proposition 5.2. Let N ⊂M be a not necessarily unital finite-dimensional subalgebra of M and
let q ∈ N. If

qτ(ws1,1) ∈ N
for all s ∈ {1, . . . , r} then there exists a subfactor Ñ ⊂M of type Iq such that

N ⊂ Ñ .

Proof. For a fixed s ∈ {1, . . . , r} we have wsk,k ∼ ws1,1 for all k because

ws1,k(ws1,k)∗ = ws1,1, (ws1,k)∗ws1,k = wsk,k.

It follows that
τ(wsk,k) = ps

q (2)
for some ps ∈ N.

We will assume that
r∑
i=1

Es = 1. (3)

This is the case only if N is a unital subalgebra of M (i.e. what we always mean by a subalgebra),
but here we explicitly allow the case when the unit of N is not equal to the one of M . The
solution is to replace N by the algebra N+ generated by N and 1. This means that we add to

N one projection Er+1 = 1 −
r∑
s=1

Er and put wr+1
1,1 = Er+1 (no other matrix units in this extra

summand). We want to prove the proposition for this extended version N+ of N and thus have
it also for the N . The point is that we have to check that

qτ(wr+1
1,1 ) ∈ N.

But this readily follows because

qτ(wr+1
1,1 ) = q −

r∑
s=1

qτ(ws1,1).

We can either extend N to N+ or, in other words, assume (3).
From (3) and (2) we have

r∑
s=1

qsps = q.

Define l0 = 0 and
l1 = p1q1,

l1 = p1q1 + p2q2,

...
lr = p1q1 + · · ·+ prqr = q.

Now recall from Lemma 5.1 that there exists a subfactor N0 ⊂ M of type Iq. Let {ui,j}i,j=1,...,q

be its matrix unit basis. Defineh

Fs =
ls∑

k=ls−1+1

uk,k, s = 1, . . . , r

hThe projections F1, . . . , Fr do not play any special role in the proof, but writing them out helps in seeing how

the remaining matrix units are constructed.
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and

W s
k,l =

ps∑
i=1

uls−1+(k−1)ps+i,ls−1+(l−1)ps+i, s = 1, . . . , r, k, l = 1, . . . , qs.

The projections F1, . . . , Fr are mutually orthogonal and sum up to 1, while for fixed s the
elements {W s

k,l}k,l=1,...,qs are matrix units of order qs with
qs∑
k=1

W s
k,k = Fs.

Moreover W s
k,l ∈ N0 ⊂M for all s, k, l.

We have that ui,i ∼ u1,1 for i = 1, . . . , q, and
q∑
i=1

ui,i = 1,

so
τ(ui,i) = 1

q

for all i. It follows that
τ(W s

k,k) = ps

q = τ(wsk,k)
for all s and k. By comparability there exists v1, . . . , vr ∈M such that

v∗svs = W s
1,1, vsv

∗
s = ws1,1.

Put

U =
r∑
s=1

qs∑
k=1

wsk,1vsW
s
1,k ∈M.

Then

U∗U =
( r∑
s=1

qs∑
k=1

W s
k,1v

∗
sw

s
1,k

)( r∑
s′=1

qs′∑
k′=1

ws
′

k′,1vs′W
s′

1,k′

)
=

∑
s,s′,k,k′

W s
k,1v

∗
s ws1,kw

s′

k′,1︸ ︷︷ ︸
δs,s′δk,k′w

s
1,1

vs′W
s′

1,k′

=
∑
s,k

W s
k,1v

∗
sw

s
1,1vsW

s
1,k

=
∑
s,k

W s
k,1 v

∗
svsv

∗
svs︸ ︷︷ ︸

(W s
1,1)

2

W s
1,k

=
∑
s,k

W s
k,1W

s
1,1W

s
1,k =

∑
s,k

W s
k,1W

s
1,k =

∑
s,k

W s
k,k = 1

and

UU∗ =
( r∑
s=1

qs∑
k=1

wsk,1vsW
s
1,k

)( r∑
s′=1

qs′∑
k′=1

W s′

k′,1v
∗
s′w

s′

1,k′

)
=

∑
s,s′,k,k′

wsk,1vs W
s
1,kW

s′

k′,1︸ ︷︷ ︸
δs,s′δk,k′W

s
1,1

v∗s′w
s′

1,k′

=
∑
s,k

wsk,1vsW
s
1,1v

∗
sw

s
1,k

=
∑
s,k

wsk,1 vsv
∗
svsv

∗
s︸ ︷︷ ︸

(ws
1,1)

2

ws1,k

=
∑
s,k

wsk,1w
s
1,1w

s
1,k =

∑
s,k

wsk,1w
s
1,k =

∑
s,k

wsk,k = 1
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so that U is unitary. Moreover

UW a
b,c =

r∑
s=1

qs∑
k=1

wsk,1vs W
s
1,kW

a
b,c︸ ︷︷ ︸

δs,aδk,bW s
1,c

= wab,1vaW
a
1,bW

a
b,c = wab,1vaW

a
1,c,

wab,cU =
r∑
s=1

qs∑
k=1

wab,cw
s
k,1︸ ︷︷ ︸

δa,sδc,kwa
b,1

vsW
s
1,k = wab,1vaW

a
1,c,

which means that
UW s

k,l = wsk,lU

for all s, k, l. Now we define Ñ = UN0U
∗. Then Ñ is a subfactor of M of type Iq and it contains

the basis {wsk,l} s=1,...,r
k,l=1,...,qs

of N , so N ⊂ Ñ . �

Remark 5.3. The proof of the above proposition may be also accomplished in a more direct
way. Namely, one can construct Ñ “around” N instead of taking an auxiliary Iq subfactor N0,
constructing matrix units inside N0 corresponding to the basis of N and then a unitary which
“rotates” N0 onto a subfactor Ñ containing N . In this way one would simply reprove Lemma 5.1
within the proof of Proposition 5.2. However, Lemma 5.1 illustrates a crucial feature of factors,
so we included it in this presentation.

Lemma 5.4. Let N ⊂ M be a finite-dimensional subalgebra. Then for any ε > 0 there exists
n ∈ N such that for any q ≥ n there is a projection e ∈P(M ∩N ′) such that

(1) τ(1− e) < ε,
(2) qτ(ews1,1) ∈ N for s = 1, . . . , r.

Proof. Let n ∈ N be the greater than the two numbers

max
1≤s≤r

{
τ(ws1,1)−1

}
and 1

ε

r∑
t=1

qt.

Then for q ≥ n we have
qτ(ws1,1) ≥ 1

for s = 1, . . . , r and

qε

( r∑
t=1

qt

)−1

≥ 1.

Therefore, for each s, there exists ks ∈ N such that

q

(
τ(ws1,1)− ε

( r∑
t=1

qt

)−1)
< ks ≤ qτ(ws1,1).

In other words

τ(ws1,1)− ε
( r∑
t=1

qt

)−1

< ks

q ≤ τ(ws1,1).

and ks

q 6= 0.
Now for each s there exists gs ∈P(M) such that

τ(gs) = ks

q and gs ≤ ws1,1
(by comparability).

Of course we have

τ(ws1,1 − gs) = τ(ws1,1)− τ(gs) = τ(ws1,1)− ks

q < ε

( r∑
t=1

qt

)−1

.



UNIQUENESS OF HYPERFINITE TYPE II1 FACTOR 17

For a fixed s = 1, . . . , r and k = 1, . . . , qs we define gsk = wsk,1g
sws1,k ≤ wsk,k. Then gs1 =

gs, gs2, . . . , g
s
qs

are pairwise orthogonal and equivalent. Indeed: for l 6= k we have

gsk ≤ wsk,k ⊥ wsl,l ≥ gsl
and

wsk,lg
s
l = wsk,lw

s
l,1g

sws1,l = wsk,1g
sws1,l = wsk,1g

sws1,kw
s
k,l = gskw

s
k,l. (4)

Moreover if s1 6= s2 or l1 6= l2 then

ws1k,l1g
s2
l2

= 0 and gs2l2 w
s1
l1,k

= 0.

Put

e =
r∑
s=1

qs∑
k=1

gsk ∈M.

We have

1− e =
r∑
s=1

qs∑
k=1

wsk,k −
r∑
s=1

qs∑
k=1

gsk =
r∑
s=1

qs∑
k=1

(wsk,k − gsk). (5)

Now recall that

τ(ws1,1 − gs1) = τ(ws1,1 − gs) < ε

( r∑
t=1

qt

)−1

.

Applying conjugation x 7→ wsk,1xw
s
1,k to the estimate above we obtain

τ(wsk,k − gsk) = τ(ws1,1 − gs) < ε

( r∑
t=1

qt

)−1

,

and so, by (5),
τ(1− e) < ε.

Now the calculation

wsk,le =
r∑
t=1

qt∑
p=1

wsk,lg
t
p =

r∑
t=1

qt∑
p=1

δs,tδl,pw
s
k,lg

t
p = wsk,lg

s
l ,

ewsk,l =
r∑
t=1

qt∑
p=1

gtpw
s
k,l =

r∑
t=1

qt∑
p=1

δt,sδp,kg
t
pw

s
k,l = gskw

s
k,l

and (4) imply that e ∈ N ′.
Finally

ews1,1 = gs1 = gs,

so that
τ(ews1,1) = τ(gs) = ks

q

and qτ(ews1,1) = ks ∈ N for s = 1, . . . , r. �

Theorem 5.5. Let M be a type II1 factor which is AFD(B). Then M is AFD(A).

Proof. Let a1, . . . , am and ε > 0 be given. We must show that there exists n ∈ N such that for
any q ≥ n a subfactor Ñ ⊂M of type Iq can be found containing elements b1, . . . , bm such that

‖bi − ai‖2 < ε.

Since M is AFD(B), there exists a finite-dimensional subalgebra N ⊂M and elements

b01, . . . , b
0
m ∈ N

such that
‖b0i − ai‖2 < ε

2 .

The algebra N has matrix unit basis {wsk,l} s=1,...,r
k,l=1,...,qs

. Let us now apply Lemma 5.4 to N and

ε′ =
(

ε
2 max

1≤i≤m
‖b0i ‖

)2

.
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Thus we obtain n ∈ N and for any q ≥ n a projection e ∈M ∩N ′ such that

τ(1− e) < ε′

and
qτ(ws1,1) ∈ N

for s = 1, . . . , r.
Consider now the finite-dimensional non-unital subalgebra Ne = eNe = eN = Ne. It has a

matrix unit basisi {
ewsk,l

}
s=1,...,r
k,l=1,...,qs

(6)

By Proposition 5.2 there exists a subfactor Ñ of type Iq such that

Ne ⊂ Ñ ⊂M.

Define now
bi = eb0i ∈ Ne ⊂ Ñ , i = 1, · · · ,m.

Note that since
‖1− e‖2 =

√
τ(1− e) <

√
ε′,

we get
‖b0i − bi‖2 =

∥∥b0i (1− e)∥∥2
< ‖b0i ‖

√
ε′.

Thus by the definition of ε′ we have
‖bi − b0i ‖2 < ε

2

and we obtain
‖bi − ai‖2 ≤ ‖bi − b0i ‖2 + ‖b0i − ai‖2 < ε.

�

iTo see that the set (6) is really a basis let us compute (using the fact that e ∈ N ′ and that τ is a trace) the

scalar product of its arbitrary elements:

τ
`
(ews

k,l)
∗(ews′

k′,l′ )
´

= τ(ws
l,kew

s′
k′,l′ )

= τ(ews
l,kw

s′
k′,l′ )

= δs,s′δk, k
′τ(ews

l,l′ )

= δs,s′δk, k
′τ(ews

l,1w
s
1,1w

s
1,l′ )

= δs,s′δk, k
′τ(ws

l,1ew
s
1,1w

s
1,l′ )

= δs,s′δk, k
′τ(ews

1,1w
s
1,l′w

s
l,1)

= δs,s′δk, k
′δl,l′τ(ews

1,1w
s
1,1) = δs,s′δk,k′δl,l′τ(ews

1,1).

It follows that the system (6) is orthogonal, hence linearly independent.


